Subcellular Compartmentalization and Chemical Forms of Lead Participate in Lead Tolerance of Robinia pseudoacacia L. with Funneliformis mosseae
نویسندگان
چکیده
The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.) seedlings inoculated with Funneliformis mosseae isolate (BGC XJ01A) under a range of Pb treatments (0, 90, 900, and 3000 mg Pb kg-1 soil). The majority of Pb was retained in the roots of R. pseudoacacia under Pb stress, with a significantly higher retention in the inoculated seedlings. F. mosseae inoculation significantly increased the proportion of Pb in the cell wall and soluble fractions and decreased the proportion of Pb in the organelle fraction of roots, stems, and leaves, with the largest proportion of Pb segregated in the cell wall fraction. F. mosseae inoculation increased the proportion of inactive Pb (especially pectate- and protein-integrated Pb and Pb phosphate) and reduced the proportion of water-soluble Pb in the roots, stems, and leaves. The subcellular compartmentalization of Pb in different chemical forms was highly correlated with improved plant biomass, height, and photosynthesis in the inoculated seedlings. This study indicates that F. mosseae could improve Pb tolerance in R. pseudoacacia seedlings growing in Pb polluted soils.
منابع مشابه
Physiological responses of Celtis caucasica L. and Robinia pseudoacacia L. to the cadmium and lead stresses
Afforestation of contaminated areas is considered as a possible strategy for reduction of contaminations. In the present study, the effects of lead (Pb) and cadmium (Cd) were investigated on chlorophyll fluorescence parameters (Fv/Fm, Fo, and Fm), photosynthetic pigments (chlorophyll a, b, and total chlorophyll), and proline in one-year-old seedlings of Celtis caucasica and Robinia pseudoacacia...
متن کاملPlant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Saleh Shahabivand1*, Akbar Padash2, Ahmad Aghaee1, Yousef Nasiri3 and Parisa Fathi Rezaei1
Plant biostimulants such as arbuscular mycorrhizal (AM) fungi and humic substances (HS) can be used as an appropriate alternative to chemical fertilizers, as regards to environmental problems of chemicals. The effects of Funneliformis mosseae as an AM fungus, HS (foliar spray and topdressing application), and chemical fertilizer (NK), separately or interacting, on biochemical responses in Menth...
متن کاملChemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L.
The aim of this study was to characterize the properties of juvenile and mature heartwood of Robinia pseudoacacia L. (black locust). The content, the composition, and subcellular localization of heartwood extractives were studied in 14 old-grown trees from forest sites in Germany and Hungary, as well as in 16 younger trees of four clone types. Heartwood extractives (methanol and acetone extract...
متن کاملAnalysis of intraspecific and interspecific interactions between the invasive exotic tree-of-heaven (Ailanthus altissima (Miller) Swingle) and the native black locust (Robinia pseudoacacia L.)
Invasive exotic plants can persist and successfully spread within ecosystems and negatively affect the recruitment of native species. The exotic invasive Ailanthus altissima and the native Robinia pseudoacacia are frequently found in disturbed sites and exhibit similar growth and reproductive characteristics, yet each has distinct functional roles such as allelopathy and nitrogen fixation, resp...
متن کاملThe Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.)
The urban environment characterized by various stresses poses challenges to trees. In particular, water deficits and high temperatures can cause immense drought stress to urban trees, resulting in reduced growth and die-off. Drought-tolerant species are expected to be resilient to these conditions and are therefore advantageous over other, more susceptible species. However, the drought toleranc...
متن کامل